The Minimalistic Guide to ACID Transactions

Welcome to the third post of distributed system series. So far in this series, we have looked at service discovery and CAP theorem. Before we move along in our distributed system learning journey, I thought it will be useful to refresh our memory with understanding of ACID transactions. ACID transactions are at the heart of relational databases. The knowledge of ACID transactions is useful when building distributed applications.

Understanding ACID transactions

A transaction is a sequence of operations that form a single logical unit of work. These transactions are executed on a shared database system to perform a higher-level function. An example of higher-level function is transferring money from one account to another. Transactions represent a basic unit of change in the database. It either executed in its entirety or not at all.

ACID (Atomicity, Consistency, Isolation, and Durability) refers to a set of properties that a database transaction should guarantee even in the event of errors, power failure, etc. The canonical example of ACID transaction is transfer of funds from one bank account to another. In a single fund transferring transaction, you have to check the account balance, debit one account, and credit another transaction. ACID properties guarantee that either money transfer from one account to other occur correctly and permanently or in case of failure both accounts have the same initial state. It would be unacceptable if one account was debited but the other account was credited.

Database transactions are motivated by two independent requirements:

  1. Concurrent database access: Multiple clients can access the system at the same time. This is achieved by the Isolation property of ACID transaction.
  2. Resiliency to system failures: System remains in consistent state in case of a system failure. This is provided by Atomicity, Consistency, and Durability properties of ACID transaction.

Continue reading “The Minimalistic Guide to ACID Transactions”